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The Galerkin method for first order hyperbolics using most higher order fmite elements on 
any mesh, or using any type of element on an irregular mesh, is known to give a low order of 
accuracy. This is because the exact solutions become distorted, though the propagation speeds 
are handled to a higher order of accuracy. The distortion comes about because the method 
makes no smoothness assumptions in its formulation. Computations with these methods can 
show rapid growth of small scale noise. The algorithms can be improved by making 
smoothness assumptions. Many other techniques for obtaining higher order accuracy with 
such elements ignore the structure of the error and give worse results than standard Galerkin 
methods. This paper presents analysis and computational examples to support these 
statements. 

1. INTR~D~JCT~~N 

This paper studies the use of quadratic finite elements and irregular meshes in 
hyperbolic problems. There has been a divergence of experience with these methods 
between applications to meteorological problems, in particular integrations of the 
shallow water equations for long periods, and engineering applications with transient 
behavior. In the former case, good results have only been obtained using linear 
elements on a regular mesh, and the use of higher order elements or irregular meshes 
leads to rapid growth of noise (e.g., [7]). This experience has been explained in terms 
of superconvergence results for these cases [8, 281. However, accurate results for 
transient problems in different contexts have been obtained using higher order 
elements, e.g., [29]. There is therefore a need to understand this difference. This is 
especially so because higher order elements and irregular grids are needed to be able 
to take advantage of the finite element method in situations that seem suited to it, for 
instance, fluid flow in irregular geometry. If the method has to be restricted to linear 
elements on a regular mesh there is no point in using it instead of finite difference and 
spectral methods. In particular, provided the geometry can be represented by a global 
coordinate transformation, the spectral method gives very good results including an 
accurate treatment of nonlinearity [3, 20, 241. The potential advantage of finite 
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element methods is that the correct treatment of nonlinearity resulting from the 
Galerkin method and demonstrated in [8] can be used in contexts where the spectral 
method is inconvenient. 

A major difference between the meteorological and most engineering applications 
is the almost inviscid nature of the former problem. The absence of viscosity means 
that “optimal” order of accuracy is no longer obtained with the finite element 
Galerkin method [ 121. The higher order of accuracy can be recovered by changing 
the algorithm, e.g., [9-l 11. A recent analysis [ 151 has shown that applying the 
Galerkin method to the first order wave equation using either quadratic or Hermite 
cubic elements leads to an accurate solution with a spurious additional wave. It is the 
spurious wave which restricts the order of accuracy and leads to the growth of noise 
in the inviscid application. In other applications this effect may be damped by the 
viscosity. 

In this paper the ideas of [ 151 are followed up, in particular to study what happens 
away from the limit of small mesh size. It is therefore necessary to carry out the 
analysis of modified Galerkin methods for all resolvable scales, as was done in [8 ]. 
With this viewpoint, it is demonstrated that the Galerkin method is difficult to 
improve on for a given finite element representation, because a technique which 
improves the asymptotic order of accuracy may be less accurate for other resolved 
scales. Only undamped schemes for the wave equation are analysed in this paper, for 
reasons of space. The use of schemes with some damping to eliminate the small scale 
noise is widespread [5, IO], but there is a danger that the detailed information carried 
by a higher order element may be lost as a result. If this information is not used there 
seems to be no advantage in using such an element which is very expensive to 
compute with. 

The same sort of analysis is also applied to integrations on an irregular grid. Error 
analysis away from the asymptotic limit must now be carried out by a computer. It is 
again demonstrated that the Galerkin technique has advantages over modified 
methods, in that the error is almost entirely small scale noise which can be filtered 
easily. However, for transient problems, it still seems better to use as smoothly 
varying a grid as possible to avoid the need for filtering. With a smooth variation the 
method has proved successful [ 251. 

2. FRAMEWORK FOR ERROR ANALYSIS 

In order to extend the work of [ 151 to finite mesh size and analyse other possible 
modified schemes it is necessary to establish an appropriate framework. The spurious 
wave found in [ 151 was caused by an eigensolution of the discrete equation not 
corresponding to an eigensolution of the differential equation. The generalized error 
analysis of [8] shows that, in order to understand Iinite element methods, it is 
necessary to construct a restriction operator taking continuous data into a finite 
element representation, and to require that the same operator be used throughout the 
solution of a problem. In the case of higher order elements we consider three types of 
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restriction: a pure interpolation, a least squares fit, and a special restriction defined 
by taking eigenfunctions of the differential equation into those of the discrete 
equation. The difficulty comes about because we can usually only define eigen- 
functions for certain parts of the differential equation, so that the special restriction 
will not be suitable for the rest of the calculation. The inconsistencies resulting are 
shown to cause errors. The advantage of the least squares restriction is that, for all 
resolvable scales, the restricted continuous eigenfunction can be shown to be very 
close to the discrete eigenfunction. 

The error analysis is carried out by the same techniques as those in [8]. Consider 
pure initial value problems of the form 

a,u = Lu on [0, T] X P, 

u= u” at 2 = 0, 
(2.1) 

where u is vector-valued (possibly complex) and L is a differential operator on Rd 
which may be nonlinear but has real coefftcients that do not depend explicitly on t. In 
many problems of practical interest L consists of a combination of sums, products 
and derivatives. It was demonstrated in [8] that the error made in approximating 
(2.1) by a multi-stage technique could be estimated by calculating the errors in 
approximating single derivatives and products. In this paper we calculate the errors 
made in approximating derivatives and products using quadratic elements. 

The theoretical framework required is the same as in [8] but with an extension. 
Suppose that for each f E [0, T] the solution u of (2.1) lies in some Hilbert space V, 
called the solution space. Following Aubin [2] we associate the triplet (V,, ,E),,, T,J 
with any procedure for approximating members of V on a discrete mesh in iRd 
characterised by a positive mesh length h. V,, is the space of discrete parameter 
values defining an approximation, rh a restriction operator associating such values 
with a given member of I’, and ph a prolongation which creates the approximation in 
V from the discrete parameter values. Three choices based on the quadratic finite 
element representation are as follows: 

(i) Introduce mesh points xi =jh, j = -J, -J + l,..., J. On each mesh interval 
use the mesh point values and a midpoint value at x = (j + j) h to define a quadratic 
function. By construction this will give a Co piecewise representation over the interval 
(-Jh, Jh). Write this function in the form 

w(x) = i wjej(x) + '2' wj+l/*Xj+ 1/*(x)9 
/=-J j=-J 

where 

e,(x) = dj, at x = k/z 

=o at x = (k + f) h, 

Xj+ I/*(x) = sjk at x=(k+i)h 

=o at x=kh. 

(2.2) 
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Define the best lit restriction ri of a function w by setting 

r4,w= (Wj*, W,T+,,,), ,--J<j,<J w E v, (2.3) 

where W,? and Wj+,,, are determined from 

i( 
w -1 Wjvj(X) -2 w* I+ liZXj+ l/Z(xl) ej(x) = O (2.4) 

and 

H w - 1 wi*ej(x) - 2 wj*+ 1/2Xj+ l/Z tx)) Xj+ l/Ztx) = O* 

The corresponding prolongation operation pi is 

pg W;“) = i wj*e,<x> + y w* j+ lPXj+ 1/2tx)* (2.5) 
j= -J 

j= -J 

(ii) Another restriction using the piecewice quadratic representation (2.2) is the 
Gauss-point collocation restriction ri . This is defined by (2.3) with (2.4) replaced by 
the collocation 

w=C wi*ej(x) + C wj*+l/*Xj+ l/z(X) (2.6) 

at the Gauss points. Two points are required for each mesh interval. 
(iii) A grid-point restriction operator r: is defined by satisfying (2.6) at the 

mesh points x = jh and x = (j + f) h. The finite element representation is now only 
being used as a method of interpolation. 

Using this framework we consider a semi-discrete approximation u,, to the solution 
u of Eq. (2.1). For each t E [0, T] it is a member of the discrete parameter space V,, 
and is given by the system of ordinary differential equations 

a,u, = LLUL, (2.7) 

where L,: V,, -+ V,, is an operator which in some sense approximates L. Then, as in 
[8], define the evolutionary error e,, as r,,u - tl,,. It satisfies the equation 

ace, - (Lhrhu - L,u,) = (r,L - L,r,) 24, (2.8) 

where the term on the right is the truncation error (T.E.). Examples of the T.E. for 
various choices of finite element representation are given in [8]. In particular, the 
asymptotic behavior of the T.E. as h + 0 is markedly different for spline Galerkin 
methods on a regular mesh, and other higher order finite element Galerkin methods. 
However, as noted in (81, and demonstrated extensively in [ 151, it may be possible to 
extract higher accuracy for general finite element methods, at least on a regular mesh. 
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Deterioration of the accuracy on an irregular mesh is observed in computations and 
it is to be expected that it will show up in the theory. If the problem on an irregular 
mesh is reinterpreted as a variable coefftcient problem on a regular mesh, high order 
accuracy can be recovered at the cost of increased nonlinearity which, unfortunately, 
may be just as damaging as the irregular mesh. 

To analyse the behavior of general finite elements on a regular mesh in a 
reasonably general context, consider the case where L is linear and has a complete set 
of normalised eigenfunctions I,V~ so that the exact solution of (2.1) can be written as 
c u,(t) w,(x)* 7-h is method can also be used for a local analysis of problems where 
the geometry or boundary conditions make it difftcult to determine global eigen- 
functions. Suppose that the approximation space V,, is N dimensional. Then construct 
an alternative approximation triplet ( VN,pN, rN) by setting 

r,w= {Wj*: 1 <j<fv}, 

PN W* = 2 WT Vj(X), 
(2.9) 

j=l 

where the vi are ordered according to the modulus of the associated eigenvalues Aj. 
Suppose that the subspace of V spanned by pNrNu, u E V is U. Now construct some 
operators between the spaces V, V,, V, and U. Since U, VN and V,, all have the finite 
dimension N, the restriction r,: U+ V,, will in general be invertible. Define 
qr: V,*U as r;‘. The projection qhrh : V + U does not have the general approx- 
imation properties of the orthogonal projection p,,r,,, but q,, can be considered as a 
post-processing optimal recovery operator in the sense of [23] given a discrete 
solution uh E V,. 

It is clear that an approximate solution of Eq. (2.1) based on representation (2.9) 
would be exact for data in the subspace U. We use this to analyse the T.E. of the 
finite element solution in more detail. The semi-discrete finite element approximation 
is given by Eq. (2.7). Suppose that the approximate operator L, has N independent 
normalized eigenfunctions w,,,, in V,, with associated eigenvalues Ahn. 

Order these eigenfunctions by minimising 11 r,, v,, - ~~,,ll~~ over all possible 
orderings. Define a new restriction operator r, : V-P V,, by 

'LWn=Whn, n < N; rL y,, = 0, n > N. (2.10) 

In the case of linear elements on a regular mesh and L = a/ax we have rL = rh, but 
for general elements r, # rh. Define an operator qL : Vh + U as (r, 1 U)-‘. Define a 
composite operator sh = r,q,, by construction it has an inverse s;’ which equals 
rh qL . Then 

Shrhvn=vhna (2.11) 

The operator s,, projects the finite element representation of eigenfunctions of the 
continuous equations into eigenfunctions of the discrete equations. 

We now use these additional operators to study the T.E. in the semi-discrete 
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solution where L is approximated by L, or, alternatively by si’L,,s,,. The error is 
analysed for solutions u in the subspace U. This is reasonable for problems where the 
solution remains smooth, but not for problems where shocks develop. Then write 

N 

u= c u,ly,. 
n=o 

The T.E. for the operator L, given by Eq. (2.8) is 

Zoi n %I rh Wn - un Lh rhWn 

= 2 AnUnrhvn-UnLhvhn + UnLh(vhn-rhvn) 
n=O 

= go CA” - nhn) %I W/m + tnn % - unLh)(rh vn - V/h”). (2.12) 

The limit of this as h--t 0 can be estimated from bounds on (A, -A,,,) and 
(rhvn - vhn). In the special case of the spline Galerkin method for Lu = u, on a 
regular mesh, rh vn = vhn, and only (A, - A,,,) need be estimated. This turns out to 
converge much more rapidly than the approximation error (u -phrhu). The analysis 
of [ 151 suggests that (A, -A,,,) may be superconvergent for more general finite 
element approximations to this L, but the term (rh v, - tqhn) is of lower order and 
dominates the error estimate. 

Now replace L, by 

SpL,S,. (2.13) 

The expression u, L, r,, (I/,, in (2.12) is replaced by 

U,SilLhShrhvne 

Using (2.1 l), this becomes 

The T. E. becomes 

(2.14) 

The only remaining term is often superconvergent. It is important to note that (2.13) 
is a different algorithm from L, and in no sense has the estimate of the accuracy of 
the solution USing Lh been altered. 

This analysis shows that the nature of the restriction r,, is critical in the error 
estimates, because it can alter )]r,qv, - vhn]]. In [8] it was only important to consider 
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the nature of r,, for nonlinear problems. For linear problems on a regular mesh with 
one degree of freedom per element, r,,W,, = w,,,, for any reasonable choice of r,,. When 
other elements are used it is necessary to consider the effect of r,, on the algorithms 
for linear as well as nonlinear operators. The choice of r,, which allows ]I rh vn - w,,,, I] 
to be minimised may be different from the choice which gives the best nonlinear 
properties and thus the overall choice will be problem dependent. 

The analysis presented above includes the analysis of [ 151 in the case where rh is 
the grid-point restriction. The filtering procedure proposed there is a local approx- 
imation to (2.11) such that ]] r,, vn - w,,” II is of the same order as ],I, - I,,,,]. A similar 
type of eigenfunction analysis is used in [ 171 to understand the behavior of finite 
element approximations to a system of equations. 

3. REVIEW OF SCHEMES FOR LINEAR ADVECI-ION USING 
QUADRATIC ELEMENTS AND LEAST SQUARES REPRESENTATION OF DATA 

Analysis of Galerkin Scheme 

Assume that the boundary conditions are periodic with period D. Consider the 
restriction ri (Eq. (2.3)) on a regular mesh applied to the initial condition u = eikx 
with k = 2nx/D. Write r = kh, where h is the mesh length. Then we can define 
functions a,(& a,,,(t) and write 

(r9,e’kx)j = a,(<) e”[, 

(4etkx)j+ 112 = 1/2 
a (0 eiti+ 1/2)[. (3.1) 

The function of interest is a,(Q/a,,,(<), which determines the shape of the restricted 
wave. The Galerkin approximation L, to Eq. (2.7) with Lu = u, is given by 

<Ut)j + g(Ut)j+ 112 + (Ut)j+ 1 = lO(Uj+ 1 - uj)/h 
-(Ut)j-1 + 2(Ut)j-,/2 + g(Ut)j + 2(Ut)j+1/2 - <ut>j+ 1 

= 10(2(Uj+ l/2 - Uj- l/2) - t(uj+ 1 - Uj- l))/h* 

(3.2) 

The calculations of [8] show that the data (3.1) are not an eigensolution of (3.2), and 
the calculations of [ 151 show the same thing for the grid-point restriction. Seek eigen- 
solutions u,,, where 

Lh uh = @(t) uh, 

(u~)~ = c?,(Q e”‘, 

(ult),+1,2 = b,,,(4) eiU+‘/2)t. 



228 M.J. P. CULLEN 

Then 

/3(C;, cos f< + 4B,,,) = 10~9, sin f& 

/I&,(4 - cos <) + Zci,,,p cos f< = 2Ooi,,, sin t< - 56, sin <. 
(3.3) 

This pair of nonlinear equations can be solved to give two values of c?,,/c?,,~ and of /I. 
This is to be expected, because substituting r = 2a - 4 in (3.3) and constructing the 
quadratic equation for 8,/d i,* gives the same equation as that derived from (3.3) 
except that the sign of the linear term is reversed; so the solutions are reversed in 
sign. Therefore one of the two solutions corresponds to c and the other to (2~ - <) 
with a sign change. In no sense is either solution spurious. Since eikx is an eigen- 
function of L = a/ax with periodic boundary conditions, the difference between 
(~~/a~,~ and C&/C?,,, is a measure of (r,yl, - I,Y,,“) in Eq. (2.12). Values of CX~/CX~,~, 
oi,/B,,, and /3 are shown in Table I for a full range of arguments. The eigenvalues are 
also plotted in Fig. 1 and the eigenfunctions in Fig. 2. 

Inspection of Table 1 shows the second order accuracy of the approximation to 
U, = U, resulting from a second order difference between aO/a,,2 and &,/oi,,,. This 
results in an O(r’) term in (T,, vn - w,,J in the truncation error (Eq. (2.12)). The 
error in the eigenvalue is O(<‘) with a very small coefficient. This analysis supersedes 
a similar analysis attempted in [S] where the two solutions were not properly 
separated. The results for B0/&i12 and /I for r + 0 were presented in [ 151; but the 
comparison with aO/al,* was not made there. 

For large values of r, the agreement between a,,/a1,2 and ~$,/&i,~ is very close. 
Since any practical use of an improved scheme like (2.13) would involve a local 
approximation to the extra projection s,,, it will be difficult to improve (3.2) effec- 
tively. We show this by illustrating two improvements based on (2.13). 

Projection to Eigenspace of Galerkin Scheme 

Seek a scheme of the form (2.13) with L, defined by (3.2). The operator s,, must 
satisfy 

(sh fX eikX), = a”&) e”[, 

(shrge’kx),+ 1,2 = cS,,~((T) e’“+ 1’2)1, 
(3.4) 

TABLE I 

Projected Eigenfunctions oft, and Eigenfunctions and Eigenvalues of L,, 

a,/a,,, 1 + 9c4/896 + O(r”) 1.00023 1.00320 1.0348 1.1170 1.257 1.693 2.0 
c?,lci,,, 1 + r=pa + O(5’) 1.00323 1.01312 1.0556 1.1358 1.265 1.684 2.0 
/j({)/j< 1 + <‘/4320+ O(<“) 1.OOOOO5 1.00008 1.0011 1.0043 1.007 0.900 0.0 
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0 

FIG. 1. Relative eigenvalues of various approximations to first derivative: (A) Quadratic Galerkin. 
(B) Linear Galerkin. (C) Quadratic Galerkin with mass lumping. (D) Taylor series. (E) Gauss-point 
collocation. 

where ri is defined by (3.1) and ci,, a,,, by (3.3). It is clear that s,, will not have a 
local definition. Seek a local approximation g,, to s,, such that the difference 
(s*r,, vn - wk.) is small as c + 0. The example here is chosen to remove the O([‘) 
term and to preserve the small error in the eigenfunction at r = 7~ shown in Table I. 
Alternatively, it could have been chosen to remove more terms in the asymptotic 
error. Define &, by 

S;, Uj = (22Uj + 2(uj+ I/* t Uj-I/*) - (Uj+ 1 + Uj-l))/24. 

(3.5) 

The analysis of the algorithm slh’L,,ih is set out in Table II. The asymptotic error is 
now O(<‘). For small < the error in the eigenfunction is reduced, at < = x/8 it is 
reduced by a factor of 20. For rr > r > 7r/2 the error is similar for both schemes and 
for 4 > n the error is greatly increased using (3.5) as can be seen in Fig. 2. For some 
applications, however, the larger errors in the eigenvalue for < > n may make 
increased eigenfunction error unimportant, and the reduced errors for small r may 
reduce the generation of roughnesses sometimes observed with (3.2). A numerical 
experiment illustrating this statement is shown in Section 5. 

Projection to Eigenspace of Finite DifSerence Operator 

An alternative strategy is to calculate accurate grid-point values of u from uh on a 
regular mesh, and then use a high order finite difference operator to estimate the 
point values of the derivative, for instance, using the schemes of [6]. These values are 
then projected back into a least squares representation. This can be done using the 
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techniques of [4] and [27] for optimal recovery of point values and derivatives from 
riu, given the least squares definition (2.4). For present purposes the scheme is 
derived at the mesh points by matching coefficients of the Taylor expansion. Define 
4, by 

n 
sh"jtI/2= uj+1/2T 

;huj = (74~4~ + 36(uj+,,, + Uj-112) - 9(Uj+ 1 + Uj-1))/128* 

(3.6) 

If L, is now a finite difference operator on all the nodal values uj, uj+ ,,2, the eigen- 
functions vhn will satisfy 

uj = &5, ujt 1,2 = &i+ 1/2)1 

and the ratio a^,,/~?,,~ will be unity. The analysis of eigenfunctions and eigenvalues of 
the composite operator S;; 'L, th, where 2,, is given by (3.6), and L, is the compact 
difference operator for Eq. (2.7) given by 

(Ut>j + 4(UJj+ I/2 + (U,)j+ 1 = 6(Uj+ 1 - Uj>lh 

<Ut>j- l/2 + 4CUt)j + (Ut)j+ l/2 = 6(Uj+ l/2 - Uj- 1/2)/h 
(3.7) 

is shown in Table II, and plotted in Fig. 2. 
The difftculty with this approach is seen from the form of (3.6). The projection 

error (u -pi riu) is O(<“) but with a large coefftcient, and very strong averaging is 
required to cancel the distortion factor a,/a ,,2 given by (3.1). The exact choice of s,, 

3ni2 2n 

FIG. 2. Shape of eigenfunction (a,/a,,,) for various approximations to first derivative: (A) Least 
squares projection of sine wave. (B) Quadratic Galerkin eigenfunction. (C) Eigenfunction using extra 
projection (3.5). (D) Eigenfunction using extra projection (3.6). 
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TABLE II 

Eigenfunctions and Eigenvalues of Modified Operatori i; ‘L, ih 

L,, is (3.2) C&/C?,,, 1 + 13r4/3456 + O(t6) 1.00009 1.00139 1.0204 1.0928 1.265 2.108 3.0 
ih is (3.5) p/i< 1 + r4/4320 + O(t6) 1.000005 1.00008 1.0011 1.0043 1.007 0.900 0.0 

15, is (3.7) a^,/&,,, 1 + 9C4/896 + O(r”) 1.00010 1.00163 1.0237 1.1200 1.391 5.544 -8.0 
f,, is (3.6) /l/it; 1 - r/2880 + 0(16) 0.99999 0.99985 0.9977 0.9875 0.945 0.696 0.0 

cannot be locally represented and it cannot be satisfactorily approximated locally for 
the full range of the argument C. Therefore this technique seems less appropriate as an 
alternative algorithm for L, than for recovery of information at the end of a 
calculation, assuming that the solution is smooth. 

For small r the values of oi,/& ,,2 given by (3.6) are closer to those of a,/~+, 
(Table I) than those given by (3.2). For < greater than 7r/2 the values of &,,/d,,, 
shown in Table I for the unmodified Galerkin scheme are just as close to (~~/czr,~ as 
are those given by either (3.2) or (3.6). The bad effect of (3.6) for large r is easily 
seen. Both algorithms are tested computationally in Section 5. 

Direct Construction of L, by Taylor Series 

The schemes discussed above allow the Galerkin algorithm (3.2) to be modified in 
regular geometry where the eigenfunctions are known. In general, these techniques 
could only be used on locally regular parts of a mesh. In this section we study the 
possibility of deriving an accurate approximation to Lu = u,, assuming the least 
squares restriction ri, which could be used on any mesh. This is a generalization of 
the Taylor series definition of finite difference schemes on a general mesh, e.g., [ 11. 
The method will be derived here for a regular mesh. 

The starting point is to regard the given data as the inner products I ut9,, I Uxj+ ,,2, 
where Sj, Xj+ 1,2 are the finite element basis functions defined in Eq. (2.2). Define an 
alternative restriction operator r;, by 

v=F*u, Vj = 3 Uej dx, vj, l/2 = ; uxj+ I,2 ak 

Then, in order to solve U, = uX, we must estimate 

I u, 0, dx, I uxXj+ l/2 dx 

in terms Of {Vj, Vi+*/2 }. On integrating by parts, this is equivalent to finding 

(3.8) 

581/45/2-6 
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(Uj), = -3 J u(ej), dx, 

(3.9) 
(v j+ 1/2)x = -t 1 u&j+ l/z)x dX* 

Assume an approximation scheme of the form 

t ai((vj+i)x + (vj-i)x)= i bi(vj+i- uj-i)* (3.10) 
i=O i=O 

This formula has been simplified by symmetry, using the regularity of the mesh. The 
coefficients in (3.10) are calculated so as to make it exact for as high a degree 
polynomial u as possible. The equations for a, and 6, are constructed using (3.8) and 
(3.9). Schemes of any asymptotic accuracy can be derived. The fourth order scheme 
is 

w,), + 7((r~)~ + k dx) = 24(~,,, - u - ,,d/k 

5(~1,,), - (ho>, - (u,>, = 3(tJ, - ~o)lh. 
(3.11) 

This scheme can be analysed in the same way as the others. The eigenfunctions must 
be compared with the restricted eigenfunctions f,,eikx defined by (3.8), which have a 
shape defined by the parameter E,/&,,,. The results are shown, in Table III, and 
Figs. 1 and 3. 

This table shows that the scheme is accurate asymptotically but very much worse 
than (3.2) for large <. This is because the Taylor series matching assumes a smooth 
U, appropriate for small r while the Galerkin method takes all values of 6 into 
account in constructing a best lit. Thus (3.2) is less accurate for small < and much 
more accurate for large <. The results using (3.11) are so much worse at < = n than 
the other schemes considered so far that the computational test was not worth 
carrying out. The poor performance of (3.11) as compared with compact difference 
schemes, which are derived in a similar way, is because of the uneven behavior of this 
finite element representation at endpoint and midpoint nodes. It represents a serious 
disadvantage of this representation, because this would have been a good way to 
derive algorithms on a general mesh. 

TABLE III 

5 t-0 48 44 42 3np II 3n/2 2n 

W4,2 1 + 3<‘/40 + O(r”) 1.01152 1.04554 1.1737 1.3604 1.571 1.911 2.0 
c=&/ci,,, (3.11) 1 + 35*/40 + O(c’) 1.01164 1.04739 1.2032 1.5067 2.000 3.325 4.0 

PIi5 1 - c4/450 + O@) 0.99995 0.99913 0.9852 0.9215 0.764 0.309 0.0 
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3~12 2n 

FIG. 3. Shape of eigenfunction (aO/a,,J for various approximations to first derivative: (A) Least 
squares projection of sine wave. (B) Lumped mass projection of sine wave. (C) Eigenfunction using 
lumped mass. (D) Eigenfunction using Taylor series. 

Scheme for Products 

In order to complete the analysis of the quadratic element using the restriction ,i, 
we compute the error made in approximating products, using the Galekin scheme. 
AS shown in [8], approximations to general operators can then be derived. The 
approximation to w = UU, where r,,t( is written as {u,, u~+~,~}, etc., is given by 

wj + 8wj+l/Z + wjt I = ((48uj+1,2uj+1/z + 4(ujt1/2Uj + Uj’i+i/zUI 

+Ujtl/2Uj+1+Uj+~Uj+1/2)+S(UjUj+Uj+~Uj+~)~-2(UjUj+~+Uj+~Uj))/7 

-W/-I + ‘WJ-I/Z + 8w, +2Wj+1/2-W~+l = (39Ujuj + lO(U,u,+,,2 + ujUj+I/z 

+Uj"j-1/2 +"juj-~,2)- 3m,~,+, + u]Uj+l +Ujuj-* +vjUj-*) 

+ 8(Ujt 1/2uj+ 112 + uj- 1/2"j-1/2)- 4 ("jt1/2ujt1 +"jt1/2ujtl +"j-1/2uj-1 

+ u/-l/2”j-l)- 3/2(ujtluj+l + uj-l”j-~))/7* (3.12) 

Simpler expressions could be obtained by collocation methods or numerical 
integration of the right hand side. Calculate the asymptotic error of this, using 
u = eikx, u = eilx allowing for the effect of the restriction rg. Then we find that 

wj = y,(k, I) e”” + v), 

Wj+ l/z = ~~,~(k, 1) eiU+ “‘)(” ‘) with r = kh, q = lh, 
where 

r&9 rl) = 1 + $ (r + 49’ - &M2+v2)+ **‘, 

r,,2G a) = 1 - &(5+ VI4 + 
, 

&p(5'+v2)+ . . . . 

(3.13) 
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Fourier analysis of (3.1) gives 

The T.E. contribution is therefore fourth order and generated by the cross product 
terms in (3.13). These terms are multiplied by coefficients comparable to those 
multiplying the terms which appear in a,(< + q). However, for large values of < and q 
the error does not grow excessively. For r = rt = n, y0(7z, n) = 1.94, ~i,~(z, n) = 0.9 1, 
giving a ratio of 2.13 as compared with ar,(2n)/a,,,(2n) = 2. 

4. OTHER SCHEMES FOR ADVECTION USING THE QUADRATIC ELEMENT 

Gauss-Point Collocation 

This method, as discussed in [9] and [ll], gives fourth order accuracy for first 
order derivatives. The scheme for Eq. (2.7) with Lu = u, is 

<uJj + 4(ut)j+ I/Z + (Ut)j+ I= 6(~,+ 1- uj)/h, 

t1 - ~~((“t>j-l + t”t>j+ 1) + 4((ut)j-1/* + C"t)j+ 112) + t2 + 2 fiN"t>j C4*l) 

= 2(4Gtuj+ 112 - uj-1/2 1 + t3 -2 flN"j+l -"j-l))lh* 

The eigenfunctions and eigenvalues of this scheme can be calculated as before, and 
the coefficients a,,/a,,2 and /3/V tabulated. Equation (4.1) can be viewed as a method 
for approximating derivatives as part of a multistage method based on the least 
squares representation. In this case the eigenfunction should be compared with rpheikx 
(Eq. (3.1)); as shown in Table I. Alternatively, the whole problem can be solved by 
collocation. In this case the initial data must be be derived using the restriction ri 
(Eq. (2.6)) and the eigenfunctions of (4.1) compared with rfieikx. These comparisons 
are made in Table IV and Figs. 1 and 4. 

This table shows that the eigenfunctions of (4.1) are a better match to those given 
by ri than ri. The errors are large for large <, much greater than those given by the 
Galerkin scheme (3.2). For small < the errors are smaller than those of (3.2), as 
expected from the asymptotic analysis. 

Use of Divided Daflerences 

It is demonstrated in [ 131 and [ 181 that by using an mth order finite difference 
scheme to approximate L in Eq. (2.1) where finite elements including all polynomials 
up to degree m - 1 are used to represent the data, an overall accuracy O(hm) is 
retained. For quadratic elements on a regular mesh we can use any fourth order finite 
difference scheme such as (3.7), to obtain fourth order accuracy. As with (4.1), a 
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TABLE IV 

Eigenfunctions and Eigenvalues for Gauss-Point Collocation Scheme 

a,,/~,,&~) 1 + 9c4/896 +O@) 1.00023 1.00320 1.0348 1.1170 1.257 1.693 2.0 
aola,,2W 1 + U24 + w”) 1.00644 1.02599 1.1073 1.2536 1.476 2.065 2.0 

oi,/&,,, (4.1) 1 +14/390+ O@) 1.00006 1.00094 1.0133 1.0574 1.155 1.588 2.0 
PIit 1 +(4/710+o(<6) 1.00003 1.00051 1.0075 1.0345 1.103 1.609 - 

Note. The coeffkients as 5 + 0 are estimated from computed values. 

finite difference scheme can be used to form part of a multistage scheme using a least 
squares representation of the data. Alternatively the whole problem can be solved 
with a finite difference algorithm, where the initial data and product terms are 
represented pointwise. The eigenfunctions in the finite difference representation have 
a&) = a,,,(r) = 1 for all kj. 

Use of Mass Lumping 

This is a way of obtaining a less expensive rather than a more accurate scheme 
(e.g., [29]). The approximation to Lu = u, is obtained from (3.2) by replacing the left 
hand sides by lO(U,)j+1,* and lO(z& The eigenvectors and eigenvalues of the 
resulting scheme are shown in Table V and Figs. 1 and 3. The eigenvectors are 
compared with rl(e’kx) and with the “lumped mass” restriction F,,(eikx) defined in 
Eq. (3.8). 

This table shows that the eigenvectors of the lumped mass scheme are intermediate 
between those given by ri and f,,. The eigenvalue is still fourth order accurate, but 
with a larger coefficient than that given by (3.2). The errors in the eigenvector are 
also larger than those given by (3.2), especially near < = rr. The eigenvalue errors 
resulting from mass lumping are much less than those from mass lumping with linear 
elements, as pointed out in [29]. However, the errors in matching the eigenfunction 
are substantially increased by lumping. 

da 7714 7712 3~14 T 3~12 2a 

FIG. 4. Shape of eigenfunction &,/a,,,) for various approximations to first derivative: (A) Least 
squares projection of sine wave. (B) Collocation projection of sine wave. (C) Eigenfunction using Gauss- 
point collocation. 
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TABLE V 

Eigenvectors and Eigenvalues for Lumped Mass Scheme 

a,,/aliz(ri) 1 + 9t4/896 + O(c”) 1.00023 1.00320 1.0348 1.1170 1.257 1.693 2.0 
a,,/a,,2(Fh) 1 + 3<‘/40+ O(c’) 1.01152 1.04554 1.1737 1.3604 1.571 1.911 2.0 

W4,* 1 + C*/24 + O(<“) 1.00643 1.02581 1.1042 1.2358 1.414 1.811 2.0 
PlX 1 -<4/1080 + O(<“) 0.99998 0.99964 0.9941 0.9691 0.900 0.544 0.0 

Petrov-Galerkin Methods 

These methods, where the trial and test functions are different, can be used in 
several ways. In [ 191 it is shown how to derive accurate schemes for the fully discrete 
approximation to (2.1) by this method. It is also possible to obtain asymptotically 
more accurate approximations to the semi-discrete problem this way. Two such 
techniques are discussed, one developed by Dendy [lo] and the other using splines. 

A Petrov-Galerkin approximation to (2.7) can be written for test functions qn and 
trial functions 0, in the form 

J 

' (Z(Uj)t Oj - L(ZUjOj)) 'In dx = O for all m. (4.2) 

It is clear that if we choose q,,, = $,, where 9, is an eigenfunction of L, and L is 
linear, then there will be no truncation error in (4.2) because we can integrate by 
parts and set Lq, = A,q,. Such an algorithm will not be local. However, this 
suggests that the error can be reduced by using local test functions vrn which combine 
to give good approximations to eigenfunctions of L. For L = a/ax, the work 
described in [4] and [28] depends on splines giving such good approximations. A 
spline Petrov-Galerkin method can be defined for a, = u,. In order to construct a 
scheme which is as local as the standard Galerkin scheme (3.2), use as test functions: 

(a) Linear splines, zero at all endpoint nodes, unity at one midpoint node. 
(b) Quadratic splines, zero at all midpoint nodes, unity at one endpoint node. 

The resulting Petrov-Galerkin scheme is 

<ut>j + 4(Ut)j+ l/z + <u,>j+ I= 6(Uj+ I- uj>lh 
- (Cut)j- 1 + (ut)j+ 1) + 8(ut),- 112 + tutI,+ 1/J + 18(~t)/ 

= W(Uj+ l/Z - uj- l/l) + 2(uj+ I- uj- ,)1/h* (4.3) 

This scheme is very similar to (4.1) and is also fourth order accurate. As with (4.1), 
the heavy averaging on the left side of the second equation leads to poor results for 
large values of r. 
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Another Petrov-Galerkin scheme is the second scheme of Dendy [lo]. For test 
functions 13, it can be written 

The form of this scheme depends on the grid length h. It is therefore difficult to 
analyse in terms of < = kh as has been done for other schemes. It is simpler to 
understand (4.4) with linear elements. On a regular mesh we obtain 

C”Jj- 1 + 4(ut)j + t”t>j+ 1 - 3(Cut)j+ 1 - C”t>j- l)lh 

= 3(Uj+ 1 - Uj- 1 )/h + 6(Uj+ 1 - 2Uj + Uj- 1)/h’* (4.5) 

Substitute the shortest resolvable wave, u = exp(irrx/h) into (4.5). Then uj = -uj+, 
and 

(ul)j = f-12Uj/h2. (4.6) 

Thus instead of obtaining a stationary solution, (~,)j = 0, which would be given by 
the conventional Galerkin method, the solution is damped. Thus the scheme cannot 
readily be analysed in terms of travelling waves like the others considered earlier. 
Substituting a general wave u = eikx into (4.5) gives 

where 

8(2 + COS t + 3 sin t/h) = (3h sin < + ~(COS r - l))/h*. 

(1 - t2/6 + O(t’))(l + t/h)/3 = (<*/6) t/h 

+ (1 - r*/12) r*pl* + o(p). (4.7) 

If we take h -+ 0 for fixed k in (4.7) the scheme is second order accurate, but if we 
take k -+ 0 for fixed h it is third order. A similar analysis could be carried out for the 
quadratic element. 

Petrov-Galerkin methods can also be used to give “upwind” advection schemes. 
These are also dissipative and not analysed here; detailed descriptions are given in 
[ 51 and elsewhere. Another “characteristic” type method using the finite element 
interpolation is described in [22]. 
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5. COMPUTATIONAL RESULTS 

Some of the different approximations to Lu = u, discussed above are tested using 
the same numerical example as was used in [8]. The equation u, + uu, = 0 is solved 
on the interval [-1, l] with periodic boundary conditions and initial data 
u(x, 0) = cos’ jm. The exact solution is calculated at t = 4. Most of the solutions 
given are for initial data calculated using the least squares restriction rz, and verified 
against riu(x, 4). In each case the algorithm is a two stage method, with different 
approximations to uX combined with the Galerkin scheme (3.12) for the product. Two 
other solutions were obtained, one using the Gauss-point collocation restriction ri 
throughout, and the other using a pointwise representation with the finite difference 
approximation (3.7) for 24,. In the latter case the finite element interpolation as used 
to derive verification solutions at points other than the grid points. For comparison a 
solution using linear elements with the same number of nodes as the quadratic 
element and a least squares representation of the data is also given. This used the two 
stage Galerkin scheme for the nonlinear term. All solutions are obtained by 
integrating with small time-steps and extrapolating to At = 0. 

Consider first the results in Table VI. Using scheme (3.2) the results are good for 
h = l/3, deteriorate at h = l/6, and improve greatly for h = l/12. This suggests that 
h = l/3 is well short of adequate resolution and apparently good results may be 
obtained by accident. In the smoother part of the solution, for x between -1 and 0, 
the solution improves steadily from h = l/3 to h = l/12. At t = 0 there is a single 
wave k = rr, so < = 7c/3 for h = l/3. At t = i the locally dominant k varies from about 
7r/2 to 3n, giving r= 7c for h = l/3. The results using the extra projection (3.4) are 
similar for h = l/3 and l/6. For h = l/12 they are better in the smooth region 
(< - n/24) and worse where the wave is steepening (< - 7r/4). Figure 2 suggests that 
the change in relative behavior should occur for < = 7r/2. Thus the behavior of the 
schemes seems to be determined by the locally dominant wave in u, rather than in u. 

As would be expected, the pure finite difference operator (3.7) cannot follow the 
best tit restrictions rz and large errors result. When this scheme is used with rgh the 
results are very accurate in the smooth region, but worse than the results using (3.2) 
where the wave is steepening (Table VII). When (3.7) is combined with the extra 
projection (3.6) the results are very good in the smooth region but worse than either 
result using (3.2) where the wave is steepening. This is consistent with the large errors 
shown in Fig. 2 for large <. 

The results using linear elements are better than those using quadratics in the 
smooth region and worse elsewhere. This is quite consistent with the structure of the 
error, since there is no eigenfunction error with linear elements but the eigenvalue 
error of (3.7) is greater than that of (3.2) and the errors using the Galerkin product 
with linear and quadratic elements also have different structures (see analysis in [8] 
and Eq. (3.13)). 

The results using the collocation scheme (4.1) are generally worse than those using 
(3.2). This is consistent with the error analysis. When the collocation scheme is used 
throughout, the calculation is almost unstable for the highest resolution. This is 
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TABLE VI A 

Numerical Results for the Advection Equation, with h = l/3, l/6 and l/12, and 
Various Approximations to u, 

x -1 -13124 -l/4 l/24 l/2 17124 314 19124 

Errors x lo4 
Scheme (3.2) 

Scheme (3.2) 
with (3.5) 

Scheme (3.7) 
with (3.6) 

Scheme (3.7) 

Scheme (4.1) 

Linear Galerkin 
errors 

h 0.0 0.25 0.5 0.75 1.0 0.75 0.5 0.25 

l/3 0.0087 0.2504 0.5007 0.7506 0.9951 0.6821 0.4670 0.2916 
l/6 - -0.0037 0.2499 0.5000 0.7501 1.0037 0.7071 0.5000 0.2929 
l/l2 0.0003 0.2500 0:5000 0.7500 0.9997 0.7495 0.5000 0.2505 

113 119 36 30 -49 -50 129 -26 -130 

116 24 7 -9 -8 343 27 -153 -113 
l/l2 -1 -2 8 -6 23 14 -20 10 

l/3 126 31 51 -104 123 155 -3 -111 

116 -48 -1 4 -3 292 7 -146 -104 
l/l2 -1 0 -1 0 -2 34 -39 13 

l/3 137 3 35 -53 419 290 15 104 

116 -42 0 0 3 124 19 -251 -200 
l/l2 -1 0 0 0 21 18 -75 31 

l/3 94 18 84 73 516 -661 -514 -380 

‘I6 -38 0 2 15 3 -84 -156 -56 
l/l2 -1 0 0 1 8 138 -119 -15 

113 -16 -14 -318 378 -316 4 0 -4 

116 9 -11 -6 -3 -50 -20 148 150 
l/l2 -1 5 10 -8 31 -43 114 -31 

l/6 55 6 24 -47 482 -93 -122 -152 
l/l2 10 0 0 3 62 28 -344 -107 
l/24 0 0 0 0 12 75 -82 34 

Note. All schemes use rz and the Galerkin product (3.12). 

TABLE VI B 

Numerical Results for the Advection Equation Using Gauss-Point Collocation Throughout 

X -1 -13124 -l/4 l/24 l/2 17124 314 19124 

h 
et@, f) l/3 -0.0466 0.2581 0.4994 0.7460 0.9882 0.7251 0.5330 0.3682 

l/6 -0.0655 0.2569 0.5009 0.7436 1.0617 0.7357 0.5010 0.2648 
l/l2 0.0051 0.2506 0.5001 0.7493 0.9943 0.7504 0.4994 0.2501 

Error x 10’ 113 -19 336 -296 191 -149 -443 -420 -385 
Scheme (4.1) l/6 166 -81 -125 82 -624 -135 180 367 

l/l2 32 30 -21 11 -39 -79 213 -109 

because of the excessive averaging on the left side of (4.1), also reflected in the large 
positive eigenvalue errors in Table IV. 

Overall this computation gives a reasonable confirmation of the error analysis, In 
this kind of integration the total error is dominated by the T.E. and the error growth 
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TABLE VII 

Numerical Results for the Advection Equation Using Compact Finite Differences 

X -1 -13124 -114 1124 112 II/24 314 19124 

Mx, f, h 0.0 0.25 0.5 0.75 1.0 0.75 0.5 0.25 
Errors x IO4 l/3 0 4 35 51 334 -128 -15 67 
Scheme (3.7) l/6 0 0 0 5 36 -55 -333 -208 

l/12 0 0 0 0 7 55 -56 14 

term in Eq. (2.8) is not dominant. Under these circumstances the quadratic element 
on a regular mesh performs quite well compared to the linear element, presumably 
other high order elements would also do so. For long computations, e.g., 
meteorological problems, the error growth term is important and the additional errors 
in smooth regions induced by higher order elements would be damaging. These can 
be alleviated by a projection such as (3.5). In a linear problem it would be sufficient 
to apply this to the initial data as in [ 151, but in a nonlinear problem it would have 
to be applied in the algorithm at each step. 

This analysis has shown how quadratic finite elements can be used effectively in 
regular geometry. In the next section the problems with irregular geometry are 
analysed. 

6. ANALYSIS OF ADVECTION ON AN IRREGULAR MESH 

It is likely that finite element methods are most advantageous in practice in 
problems where the mesh has to be irregular and use of spectral methods requires 
piecewise coordinate transformations [21]. However, it is known that finite element 
methods for advective problems on an irregular mesh can give apparently poor results 
(e.g., [7]) and th e asymptotic order of accuracy is low [ 161. The Galerkin method 
leads to a conservative scheme which cannot therefore handle the propagation of a 
wave from a fine grid to a coarse grid which cannot resolve it. An “upwind” method 
may give a smoother but less accurate solution. The results of the earlier part of this 
paper suggests that the Galerkin method may give an accurate scheme for advection 
plus distortion errors which could be eliminated by extra projections, and that the low 
asymptotic order of accuracy is caused by the absence of a smoothness assumption in 
the formulation. 

To investigate this possibility we carry out an error analysis away from the 
asymptotic limit. Two schemes are then applied to the computational example of 
Section 5. The error analysis is a calculation of the truncation error term 
(r,L - L,r,) u of Eq. (2.8). A fixed irregular grid is analysed. The limit h --) 0 is 
difficult to define for problems using irregular grids since it is not clear whether the 
ratio of adjacent grid lengths should be O(h) or 0( 1). Fourier analysis can be used if 
the irregular grid is extended periodically, but the asymptotic limit for long waves 
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cannot be taken as the periodicity is fixed by the dimensions of the problem. In this 
calculation a one-dimensional irregular grid is analysed by extending it periodically 
and calculating the truncation error for u = exp(2inrcx/D), where D is the periodicity. 
The error must be calculated by computer by carrying out an integration of U, = U, 
with small time-steps and extrapolating to At = 0. Because the solution distorts as it 
moves through the mesh the integration was carried out over a time interval D, after 
which the exact solution is identical to the initial data. 

The grid was chosen to give a uniform representation of the solution of the 
example of Section 5 at t = 4. This is the strategy used successfully in steady state 
problems. The endpoints of the quadratic elements were therefore at 
x= (-1, - 13/24, --l/4, l/24, l/2, 17/24, 3/4, 19/24}/2D. The maximum ratio of 
element size is 11 to 1. The results are shown in Table VIII, for unit wave amplitude. 
For wave numbers greater than 3 the distortion becomes too great after time D for 
the speed to be calculated. The speed error is calculated from an average of the errors 
in values of x at which u = 0. 

TABLE VIII 

Truncation Error Calculation for Irregular Grid 

Wavenumber n 1 2 3 
Total L error 1 0.00724 0.0955 0.2340 
Speed error (%) +0.03 7 f0.80 -1.32 

The asymptotic rate of convergence of the L, error should be 0(/z*). This roughly 
agrees with Table VIII. For wavenumber 3 the L, error is 23% of the wave 
amplitude, while the error in wave speed is only 1%. Thus the existence of an 
accurate solution with added noise is confirmed, though it can no longer be easily 
expressed as a difference in order of accuracy. 

We now illustrate the performance of the scheme on the computational example of 
Section 5. Two solutions were obtained and compared with rP,n(x, f). One was 
obtained by a two stage Galerkin approximation to U, = UU, on the irregular mesh. 
The other was obtained by writing 

4 = uf&, (6.1) 

where 4 is a new coordinate in which the mesh is uniform. r is a piecewise linear 
function of x. A direct differentiation of r gives a piecewise constant &, which when 
substituted into the Galerkin approximation to (6.1), leads to the standard algorithm. 
If, instead, & is approximated by a continous function by using p$$, and then the 
product (6.1) evaluated, a non-conservative scheme results which can handle the 
transfer of information from fine to coarse mesh. Another method using (6.1) would 
be to form an algorithm to seek the best least squares tit to u integrated over r 
instead of x. This will be a different solution which may or may not be preferable. 
The solutions using the first two methods are shown in Table IX and Figs. 5 and 6. 
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TABLE IX 

Solution of Advection Equation on Irregular Grid 

x -1 -13124 -l/4 l/24 112 17124 314 19124 

T;u(x, +, -0.0013 0.2539 0.5000 0.7461 1.0013 0.7718 0.5000 0.2282 
Error x lo4 

Galerkin -55 -124 -174 -245 -408 -506 -162 -123 
Non- 

conservative -55 -82 89 -88 -4 90 375 287 

The Galerkin scheme gives an accurate solution with, added to it, a large 
oscillation between endpoints and midpoints. The accurate solution could be obtained 
by post-processing, assuming the true solution to be smooth. This is best achieved by 
filtering I z+O,, , where On are the normalized basis functions because l ~9, will vary 
smoothly for a smooth U, while the coefficients in rzu will not. 

The second integration shows reduced errors, except between x = 35148 and 1. 
However, the structure of the error is less well defined, it is not obvious how to 
recover a solution by post-processing, and there is clearly a lag in the wave speed. 
This is confirmed by the error analysis calculation for the second scheme. The extra 
nonlinearity introduced made it impossible to calculate the errors as shown in 
Table VIII, because the integration could not be continued to t = D. Thus truncation 
error is much larger in this scheme. 

These results illustrate again that the finite element Galerkin algorithm contains an 
accurate scheme that can be reached by imposing extra smoothness requirements. 
However, they also emphasize that an irregular grid should not be used for this sort 
of problem, at least with an Eulerian scheme. This is true even when the grid is 

0.8 

FIG. 5. Results using irregular grid for transport equation: (A) L-east squares tit to exact solution. 
(B) Galerkin solution. 
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FIG. 6. Errors using irregular grid for transport equation: (A) Error in Galerkin solution. (B) Error 
in solution using non-conservative scheme. 

designed to fit the exact solution as in this example. The errors tabulated here are 
greater than those for the Galerkin integrations with a regular grid, even the one with 
fewer nodes. If the mesh is allowed to move, as in [30], the situation is totally 
different and very accurate results can be obtained, at least in one dimension. 

7. CONCLUSIONS 

These results show a reasonable consistency between the behavior of the computed 
solutions and the error analysis. Quadratic finite element methods on regular and 
irregular grids 
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methods. In the meteorological application it is found that all these methods give 
similar answers for similar work. 

In transient applications where the viscosity is sufficient to control the noise, the 
analysis here suggests that the finite element Galerkin algorithm can be used safely 
and should be better than the modified algorithms discussed here. If time integration 
errors are important, the Petrov-Galerkin schemes discussed in [ 191 will be more 
appropriate. The decision as to whether the noise is damaging will have to be made 
separately for each problem, because it depends on the degree of nonlinearity and the 
flow normal to the axis of mesh refinement, as well as on the viscosity. 
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